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The symmetry energy in the nuclear equation of state governs phenomena from the structure of 
exotic nuclei to astrophysical processes. The structure and the composition of neutron stars depend 
crucially on the density dependence of the symmetry energy [1]. As a general representation of the 
symmetry energy coefficient we use the definition 
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where E(n; δ; T) is the energy per nucleon of nuclear matter of N neutrons and Z protons  with density n, 
asymmetry δ =(N-Z)/A, and temperature T.  

Our empirical knowledge of the symmetry energy near the saturation density, n0, is based 
primarily on the binding energies of nuclei. The Bethe-Weizsäcker mass formula leads to values of about 
Esym(n0; 0) = 28-34 MeV for the symmetry energy at zero temperature and saturation density n0 ≈ 0.16 
fm-3, if surface asymmetry effects are properly taken into account. In contrast to the value of Esym(n0; 0), 
the variation of the symmetry energy with density and temperature is intensely debated. Many theoretical 
investigations have been performed to estimate the behavior of the symmetry energy as a function of n 
and T. Typically, quasiparticle approaches such as the Skyrme Hartree-Fock and relativistic mean field 
(RMF) models or Dirac-Brueckner Hartree-Fock (DBHF) calculations are used. In such calculations the 
symmetry energy tends to zero in the low-density limit for uniform matter. However, in accordance with 
the mass action law, cluster formation dominates the structure of low-density symmetric matter at low 
temperatures. Therefore, the symmetry energy in this low-temperature limit has to be equal to the binding 
energy per nucleon associated with the strong interaction of the most bound nuclear cluster. A single-
nucleon quasiparticle approach cannot account for such structures. The correct low-density limit can be 
recovered only if the formation of clusters is properly taken into account. 
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TABLE I. Temperatures, densities, free and internal symmetry energies for different values of the surface velocity as 
derived from heavy-ion collisions (cols. 2-6), from the QS approach (cols. 7-8) and self consistently with clusters 

(cols. 9-12), see text.   

Vsurf  T n Fsym NSE
symS  Esym QS

symF  QS
symE  Tsc nsc sc

symF  sc
symE  

(cm/ns) (MeV) (fm-3) (MeV) (kB) (MeV) (MeV) (MeV) (MeV) (fm-3) (MeV) (MeV) 

0.75 3.31 0.00206 5.64 0.5513 7.465 6.607 8.011 3.26 0.00493 9.211 9.666 

1.25 3.32 0.00165 6.07 0.5923 8.036 6.087 7.502 3.45 0.00511 9.295 9.647 

1.75 3.61 0.00234 6.63 0.4137 8.124 6.877 7.896 3.54 0.00510 9.284 9.612 

2.25 4.15 0.00378 7.81 0.1557 8.456 8.184 8.305 3.66 0.00495 9.193 9.524 

2.75 4.71 0.00468 8.28 -0.0162 8.204 8.967 8.321 4.02 0.00510 9.274 9.386 

3.25 5.27 0.00489 9.30 -0.1358 8.584 9.395 7.785 4.65 0.00574 9.683 9.227 

3.75 6.24 0.00549 10.69 -0.2936 8.858 10.73 7.623 5.75 0.00684 10.49 8.978 

4.25 7.54 0.00636 11.83 -0.4197 8.665 11.4 7.807 7.46 0.00866 11.98 8.964 
 
In this work we employ a quantum statistical (QS) approach which includes cluster correlations 

in the medium. It interpolates between the exact low-density limit and the very successful RMF 
approaches near the saturation density. In this QS approach the cluster correlations are described in a 
generalized Beth- Uhlenbeck expansion. The advantage of this method is that the medium modifications 
of the clusters at finite density are taken into account. The method requires a sufficiently accurate model 
for the quasiparticle properties, for which we employ a RMF model with density dependent couplings 
which gives a good description both of nuclear matter around normal density and of ground state 
properties of nuclei across the nuclear chart. In order to extend the applicability of this RMF model to 
very low densities, it has been generalized in Ref. [2] to account also for cluster formation and 
dissolution. 

Recently, the experimental determination of the symmetry energy at very low densities produced 
in heavy ion collisions of 64Zn on 92Mo and 197Au at 35 MeV per nucleon has been reported [3]. Results 
of this study are given in the first four columns of Table I. The surface velocity Vsurf , i.e. the velocity 
before the final Coulomb acceleration, was used as a measure of the time when the particles leave the 
source under different conditions of density and temperature. The yields of the light clusters A ≤ 4 were 
determined as a function of Vsurf . Temperatures were determined with the Albergo method [4] using a H-
He thermometer based on the double yield ratio of deuterons, tritons, 3He and 4He, and are given in Table 
I as the average for the two reactions. The free neutron yield is obtained from the free proton yield and 
the yield ratio of 3H to 3He. To determine the asymmetry parameter of the sources the total proton and 
neutron yields including those bound in clusters are used. The proton chemical potential is derived from 
the yield ratio of 3H to 4He. The corresponding free proton and free neutron densities are calculated, and 
the total nucleon density is obtained by accounting also for the bound nucleons according to their 
respective yields [3]. The total nucleon densities are of the order of 1/100th to 1/20th of saturation 
density, as seen in Table. I. 

An isoscaling analysis [5] has been employed (as a function of Vsurf) to determine the free 
symmetry energy Fsym via the expression α = 4Fsym Δ(Z/A)2/T . Here α is the isoscaling coefficient 
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determined from yield ratios of Z = 1 ejectiles of the two reactions and Δ(Z/A)2 is the difference of the 
squared asymmetries of the sources in the two reactions. With Δ(Z/A)2 and the temperature determined as 
above, the free symmetry energy is extracted. From the free symmetry energy derived in this way from 
the measured yields, the internal symmetry energy can be calculated if the symmetry entropy is known. 

The values of the symmetry entropy NSE
symS  for given parameters of temperature and density within the 

nuclear statistical equilibrium (NSE) model are shown in Table I, column 5. They are calculated with the 
equivalent expression of Eq. (1) as the difference between the entropies of pure proton or neutron and 
symmetric nuclear matter.  The results obtained in this way for the internal symmetry energy Esym = 

Fsym+T NSE
symS  are shown in Table I, column 6. In Table I, we also give results of the QS model [2] for the 

free and internal symmetry energies (columns 7 and 8) at given T and n. There are large discrepancies 
between the measured values and the results of calculations in the mean-field approximation when 
cluster formation is neglected. On the other hand, the QS model results correspond nicely to the 
experimental data.  

In Fig. 1 we present results for different approaches to extracting the internal symmetry energy 
and compare with the experimental values. In the left panel of the figure we show theoretical results for T 
at or close to zero. A widely used momentum-dependent parameterization of the symmetry energy (MDI) 
at temperature T = 0 MeV was given in Ref. [6] and is shown for different assumed values of the stiffness 
parameter x. For these parameterizations the symmetry energy vanishes in the low-density limit. We 
compare this to the QS result at T = 1 MeV. In this approach the symmetry energy is finite at low density. 
The T = 1 MeV curve will also approach zero at extremely low densities of the order of 10-5 fm-3 because 
the temperature is finite. The RMF, T = 0 curve is discussed below. Also note that the underlying RMF 
model for the quasiparticle description with n0 = 0.149 fm-3, Esym(n0) = 32.73 MeV gives a reasonable 
behavior at high density similar to the MDI, x=0 parameterization. We thus see that our approach 
successfully interpolates between the clustering phenomena at low density and a realistic description 
around normal density. In the right panel of Fig. 1 we compare to the experimental results, full circles 
(Tab. I, col. 6) in an expanded low-density region. Besides the MDI parameterization we show the QS 
results [2] for T=1, 4, and 8 MeV, which are in the range of the temperatures in the experiment. The QS 
results including cluster formation agree well with the experimental data points, as seen in detail in Fig. 
1. We conclude that medium-dependent cluster formation has to be considered in theoretical models to 
obtain the low-density dependence of the symmetry energy that is observed in experiments. 

The temperatures and densities of columns 2 and 3 in Table I will be modified if medium effects 
on the light clusters are taken into account [7]. We have carried out a self-consistent determination of the 
temperatures Tsc and densities nsc taking into account the medium dependent quasiparticle energies as 
specified in Ref. [8] (columns 9 and 10 of Table I). Compared to the Albergo method results [3], the 
temperatures Tsc are about 10% lower. Significantly higher values are obtained for the inferred densities 
nsc which are more sensitive to the inclusion of medium effects. We have also calculated the free and 
internal symmetry energies corresponding to these self-consistent values of Tsc and nsc according to Ref. 
[2] (columns 11 and 12 of Table I). These results are also shown in the right panel of Fig. 1 as open 
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circles. The resultant internal symmetry energies are 15 to 20% higher than the QS model values for T 
and n given in columns 2 and 3 in Table I. 

We have restricted our present work to that region of the phase diagram where heavier clusters 
with A > 4 are not relevant. The simplest approach to model the formation of heavy clusters is to perform 
inhomogeneous mean-field calculations in the Thomas-Fermi approximation assuming spherical Wigner-
Seitz cells. In Fig. 1 (left panel) preliminary results for the zero-temperature symmetry energy of such a 
calculation is shown by the long-dashed line using the same RMF parameterization as for the QS 
approach introduced above; for details see Ref. [9]. The symmetry energy in this model approaches a 
finite value at zero density in contrast to the behavior of the MDI parameterizations and conventional 
single-nucleon quasiparticle descriptions. 

In conclusion, we have shown [10] that a quantum statistical model of nuclear matter, that 
includes the formation of clusters at densities below nuclear saturation, describes quite well the low-
density symmetry energy which was extracted from the analysis of heavy-ion collisions. Within such a 
theoretical approach the composition and the thermodynamic quantities of nuclear matter can be modeled 

 
FIG. 1. Comparisons of the scaled internal symmetry energy Esym(n)/Esym(n0) as a function of the 
scaled total density n/n0 for different approaches and the experiment. Left panel: The symmetry 
energies for the commonly used MDI parameterization for T = 0 and different asy-stiffnesses, 
controlled by the parameter x (dotted, dot-dashed and dashed lines); for the QS model including 
light clusters for temperature T = 1 MeV (solid line), and for the RMF model at T = 0 including 
heavy clusters (long-dashed line). Right panel: The internal scaled symmetry energy in an expanded 
low density region. Shown are again the MDI curves and the QS results for T = 1, 4, and 8 MeV 
compared to the experimental data with the NSE entropy (solid circles) and the results of the self-
consistent calculation (open circles) from Table I. 
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in a large region of densities, temperatures and asymmetries that are required, e.g., in supernova 
simulations. 

 
[1] J.M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007). 
[2] S. Typel, G. Röpke, T. Klähn, D. Blaschke and H.H. Wolter, Phys. Rev. C 81, 015803 (2010). 
[3] S. Kowalski et al., Phys. Rev. C 75, 014601 (2007). 
[4] S. Albergo, et al., Nuovo Cimento A 89, 1 (1985). 
[5] M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001). 
[6] L.W. Chen et al., Phys. Rev. Lett. 94, 032701 (2005); Phys. Rev. C 76, 054316 (2007). 
[7] S. Shlomo et al., Phys. Rev. C 79, 034604 (2009). 
[8] G. Röpke, Phys. Rev. C 79, 014002 (2009). 
[9] S. Typel et al., in preparation. 
[10] J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010). 


	Symmetry energy of dilute warm nuclear matter
	The symmetry energy in the nuclear equation of state governs phenomena from the structure of exotic nuclei to astrophysical processes. The structure and the composition of neutron stars depend crucially on the density dependence of the symmetry energy...
	(1)
	where E(n; δ; T) is the energy per nucleon of nuclear matter of N neutrons and Z protons  with density n, asymmetry δ =(N-Z)/A, and temperature T.
	Our empirical knowledge of the symmetry energy near the saturation density, n0, is based primarily on the binding energies of nuclei. The Bethe-Weizsäcker mass formula leads to values of about Esym(n0; 0) = 28-34 MeV for the symmetry energy at zero te...
	We have restricted our present work to that region of the phase diagram where heavier clusters with A > 4 are not relevant. The simplest approach to model the formation of heavy clusters is to perform inhomogeneous mean-field calculations in the Thom...
	[1] J.M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007).
	[2] S. Typel, G. Röpke, T. Klähn, D. Blaschke and H.H. Wolter, Phys. Rev. C 81, 015803 (2010).
	[3] S. Kowalski et al., Phys. Rev. C 75, 014601 (2007).
	[4] S. Albergo, et al., Nuovo Cimento A 89, 1 (1985).
	[5] M.B. Tsang et al., Phys. Rev. Lett. 86, 5023 (2001).
	[6] L.W. Chen et al., Phys. Rev. Lett. 94, 032701 (2005); Phys. Rev. C 76, 054316 (2007).
	[7] S. Shlomo et al., Phys. Rev. C 79, 034604 (2009).
	[8] G. Röpke, Phys. Rev. C 79, 014002 (2009).
	[9] S. Typel et al., in preparation.
	[10] J.B. Natowitz et al., Phys. Rev. Lett. 104, 202501 (2010).

